Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin.

Identifieur interne : 000413 ( Main/Exploration ); précédent : 000412; suivant : 000414

In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin.

Auteurs : Le Thanh Mai Pham [Corée du Sud] ; Hogyun Seo [Corée du Sud] ; Kyung-Jin Kim [Corée du Sud] ; Yong Hwan Kim [Corée du Sud]

Source :

RBID : pubmed:30555531

Abstract

Background

The lignin peroxidase isozyme H8 from the white-rot fungus

Results

The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from

Conclusion

Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin.


DOI: 10.1186/s13068-018-1324-4
PubMed: 30555531
PubMed Central: PMC6287364


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In silico-designed lignin peroxidase from
<i>Phanerochaete chrysosporium</i>
shows enhanced acid stability for depolymerization of lignin.</title>
<author>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seo, Hogyun" sort="Seo, Hogyun" uniqKey="Seo H" first="Hogyun" last="Seo">Hogyun Seo</name>
<affiliation wicri:level="1">
<nlm:affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyung Jin" sort="Kim, Kyung Jin" uniqKey="Kim K" first="Kyung-Jin" last="Kim">Kyung-Jin Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30555531</idno>
<idno type="pmid">30555531</idno>
<idno type="doi">10.1186/s13068-018-1324-4</idno>
<idno type="pmc">PMC6287364</idno>
<idno type="wicri:Area/Main/Corpus">000316</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000316</idno>
<idno type="wicri:Area/Main/Curation">000316</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000316</idno>
<idno type="wicri:Area/Main/Exploration">000316</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In silico-designed lignin peroxidase from
<i>Phanerochaete chrysosporium</i>
shows enhanced acid stability for depolymerization of lignin.</title>
<author>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seo, Hogyun" sort="Seo, Hogyun" uniqKey="Seo H" first="Hogyun" last="Seo">Hogyun Seo</name>
<affiliation wicri:level="1">
<nlm:affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyung Jin" sort="Kim, Kyung Jin" uniqKey="Kim K" first="Kyung-Jin" last="Kim">Kyung-Jin Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu</wicri:regionArea>
<wicri:noRegion>Daegu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>The lignin peroxidase isozyme H8 from the white-rot fungus </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusion</b>
</p>
<p>Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30555531</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>In silico-designed lignin peroxidase from
<i>Phanerochaete chrysosporium</i>
shows enhanced acid stability for depolymerization of lignin.</ArticleTitle>
<Pagination>
<MedlinePgn>325</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-018-1324-4</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">The lignin peroxidase isozyme H8 from the white-rot fungus
<i>Phanerochaete chrysosporium</i>
(LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as repolymerization of phenolic products occurs simultaneously at neutral pH. Because repolymerization of phenolics is repressed at acidic pH, a highly acid-stable LiPH8 could accelerate the selective depolymerization of recalcitrant lignin.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from
<i>Phanerochaete chrysosporium</i>
and acid-stable manganese peroxidase isozyme 6 (MnP6) from
<i>Ceriporiopsis subvermispora.</i>
Effective salt bridges were probed by molecular dynamics simulation and changes to Gibbs free energy following mutagenesis were predicted, suggesting promising variants with higher stability under extremely acidic conditions. The rationally designed variant, A55R/N156E-H239E, demonstrated a 12.5-fold increased half-life under extremely acidic conditions, 9.9-fold increased catalytic efficiency toward veratryl alcohol, and a 7.8-fold enhanced lignin model dimer conversion efficiency compared to those of native LiPH8. Furthermore, the two constructed salt bridges in the variant A55R/N156E-H239E were experimentally confirmed to be identical to the intentionally designed LiPH8 variant using X-ray crystallography (PDB ID: 6A6Q).</AbstractText>
<AbstractText Label="Conclusion" NlmCategory="UNASSIGNED">Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pham</LastName>
<ForeName>Le Thanh Mai</ForeName>
<Initials>LTM</Initials>
<AffiliationInfo>
<Affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</Affiliation>
<Identifier Source="ISNI">0000 0004 0381 814X</Identifier>
<Identifier Source="GRID">grid.42687.3f</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seo</LastName>
<ForeName>Hogyun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</Affiliation>
<Identifier Source="ISNI">0000 0001 0661 1556</Identifier>
<Identifier Source="GRID">grid.258803.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Kyung-Jin</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>2School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea.</Affiliation>
<Identifier Source="ISNI">0000 0001 0661 1556</Identifier>
<Identifier Source="GRID">grid.258803.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yong Hwan</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>1School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</Affiliation>
<Identifier Source="ISNI">0000 0004 0381 814X</Identifier>
<Identifier Source="GRID">grid.42687.3f</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acid stability</Keyword>
<Keyword MajorTopicYN="N">In silico design</Keyword>
<Keyword MajorTopicYN="N">Lignin degradation</Keyword>
<Keyword MajorTopicYN="N">Lignin peroxidase</Keyword>
<Keyword MajorTopicYN="N">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="N">Salt bridges</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30555531</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-018-1324-4</ArticleId>
<ArticleId IdType="pii">1324</ArticleId>
<ArticleId IdType="pmc">PMC6287364</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10051582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2002 Sep;83(3):1595-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2002 Jul 2;3(7):604-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2008 Feb;21(2):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1989 Dec 5;34(10):1251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18588065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008 Dec 04;8:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2009 May;36(5):757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2009 Dec;68(2):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2011 Mar;79(3):898-915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21287621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 11;287(20):16903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2012 Aug 03;12:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22862820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2009 Jan;40(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24031314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 03;7(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24387130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jul 24;7:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25788979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 23;10(10):e0140984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2016 Jun 7;110(11):2328-2341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27276251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27311348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2016 Nov 5;37(29):2573-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27634390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Nov 15;9:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27872660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Mar 16;10:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28331543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2017 Jul;71(7):1876-1887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 11;7(1):11161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28894122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29866821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1968 Apr 28;33(2):491-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5700707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 Oct;2(10):1551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Apr 1;315 ( Pt 1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Sep;7(9):1898-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
</noRegion>
<name sortKey="Kim, Kyung Jin" sort="Kim, Kyung Jin" uniqKey="Kim K" first="Kyung-Jin" last="Kim">Kyung-Jin Kim</name>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
<name sortKey="Seo, Hogyun" sort="Seo, Hogyun" uniqKey="Seo H" first="Hogyun" last="Seo">Hogyun Seo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30555531
   |texte=   In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30555531" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020